skip to main content


Search for: All records

Creators/Authors contains: "Hollibaugh, James T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dissolved organic nitrogen (DON) can account for a large fraction of the dissolved nitrogen (N) pool in the ocean, but the cycling of marine DON is poorly understood. Recent discoveries that urea‐ and cyanate‐N can be oxidized by some strains of Thaumarchaeota suggest that these abundant microbes may be able to access and oxidize a fraction of the DON pool. However, measurements of the oxidation of N supplied as DON compounds are scarce. Here, we compare oxidation rates of N supplied as a variety of DON compounds in samples from Georgia coastal waters, where nitrifier communities are numerically dominated by Thaumarchaeota. Our data indicate that polyamine‐N is particularly amenable to oxidation compared to the other DON compounds tested. Oxidation of N supplied as putrescine (1,4‐diaminobutane) was generally higher than that of N supplied as glutamate, arginine, or urea, and was consistently 5–10% of the ammonia oxidation rate. Our data also suggest that the oxidation rate of polyamine‐N may increase as the length of the carbon skeleton increases. Oxidation of N supplied as putrescine, urea, and glutamate were all highest near the coast and lower further offshore, consistent with patterns of ammonia oxidation in these waters. Though it is unclear whether oxidation of polyamine‐N reflects direct oxidation by Thaumarchaeota or combines remineralization and subsequent ammonia oxidation, more rapid oxidation of N from putrescine compared to amino acids or urea suggests that polyamine‐N may contribute significantly to nitrification in the ocean.

     
    more » « less
  2. An amendment to this paper has been published and can be accessed via a link at the top of the paper.

     
    more » « less
  3. Abstract

    The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as ‘type material’, thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.

     
    more » « less